Movement = well being. We are designed to move. And apparently to move at speed: our bodies are apparently designed to support running more so than even walking. Perhaps not surprisingly, Use it or Lose it for humans could be redefined potentially as Move It or Lose It.
Our physiology works on a move it or lose it principle: by Woolf's Law and Davis' Law, we get to keep only what we use, and use is determined by - yes - movement. Don't move our muscles, function degrades; don't use our bones, bones degrade, don't move the joints, joints degrade. Movement means strength, fitness, digestion, respiration, skin tone, joint health, heart health, everything health. Could it be that simple?
Everything about our beings responds best to movement: movement therefore seems to mean a big neurological thumbs up. If we are able to move, we're good to go, to flee, to hunt or to gather.
On the other hand, if our nervous system either perceives or receives a threat of any kind, movement is what pays: sore shoulder means reduced range of motion; shoes too tight so joints are compressed and less able to function as designed means less muscle power for a deadlift. Loosen up those shoes (or get rid of them), do some foot mobilization work (ankle circles; toe waves) and power is restored to the system. We react *that* quickly, as reflected in the SAID principle.
SAID stands for "specific adaptation to imposed demand." Eric Cobb, DC, c0-founder of Z-Health adds "exactly and immediately" to the SAID mix. In other words, our bodies respond exactly and immediately to what we're doing.
We see evidence of this immediacy all the time. Go to pick something up, our muscles don't wait to turn on to support that position; they do so right away, courtesy of the nervous system. We are about to go on stage to give a talk, and our heart rate accelerates right at that moment pumping more blood to our peripheral limbs; likewise hormones are released to prepare for flight to deal with the perceived threat of our anxiety. That response happens as soon as we perceive the moment of threat - which may be long before, right before or during the event.
A huge part of that immediate adaptation is the speed at which information travels through the nervous system. Most fibers are sending info at 300miles per hour. That's fast. One might almost say immediate.
Not moving = We have a Problem, Houston. Movement is so basic, so fundamental an indicator of well being, that *not* moving is, on a gross scale, a sign of illness or duress. Our movement is reduced seemingly in proportion to the degree of perceived or actual threat to the system. Our movement is reduced if we have: a broken limb, a gut ache, a head ache, if we feel depressed. Likewise, we think of aging as a process of movement deterioration: the aged are often slower, less mobile, suffer from movement debilitations - or are entirely bed ridden, just like the acutely ill.
Irony. We are, despite our awesome craniums, embodied beings. Our modern lives, however, have moved us to a place where, to our nervous system we generally operate, if ya think about it, from postures of illness: we don't move; we sit at desks; we sit in cars, trains and planes. We are more sedentary than ambulatory.
Likewise those postures often closely resemble what's know as threat response or startle positions: hunched shoulders, head lowered, legs raised towards chest (from sitting) - if our legs and hands were pushed up a bit more we'd be in total fetal posture. And the rolling up into a ball is the big threat protection posture: cover the internal organs, protect the head, eyes and ears. That's a little, er, sick, isn't it?
Response to Modern Life:
Dynamic Joint Mobility as a first step, or movement.
If we tell our bodies that we are non mobile, our bodies also respond immediately to this - as we have seen - with Wolff's Law and Davis's Law: we are rebuilding tissue ALL the time. If we continually sit slumped, the body will work to maintain that position - go to get out of it, we feel stiff. Over a long enough time, the bones remodel to better maintain that position.
A painless and effective way to counteract less mobility is to move: move every joint in the body through its range of motion - that is - through the degree of motion we can voluntarily control. Another name for moving each joint in the body in a focused way is dynamic joint mobility work.
There are lots of joint mobility systems out there; the one i prefer, practice and teach is z-health. I've written lots about why (article index) and here's Z-Health's FAQ, but the main reason is that the movements in the R, I and S continuum are designed to move each joint
- really: each joint, from head to foot, precisely
- through as many positions as possible
- as many speeds as possible
- with varying loads
Range of motion is a great way to see how our nervous system may be doing with our body. We may feel fine but if we go to raise our arm in front of us to beside our ear and it usually gets to beside our ear but today it's only going to beside our cheek something's up. We might not perceive what it is clearly, but our nervous system does.
Doing a few joint mobility drills will often improve that range of motion. Some joints, like the wee bones in the feet and hands don't have a great deal of motion - but they do move. They're joints for a reason - if there wasn't a need for a joint, there'd be a bone, as Cobb puts it.
So smaller joint motions mean smaller range of motion, but still movements - and precise movements at that for optimal efficiency (more on efficient movement here). How to hit the target and what those targets are are important to maximize benefit of this joint librating work.
Repetition Only One Way: Bad; All ways, good. Other joints, like the wrist, pretty big obvious range of motion as we bend the hands back and forth at the wrists. But also therefore important to move those joints through those ranges of motion. Carpal Tunnel or RSI is not usually the result of too many reps, but too many reps in only ONE direction of a possible set of motions. Like typing on a keyboard - flexion flexion flexion, no extension; same with musicians. And here's one: elbows have fabulous movement possibilities but do you know some ways to move them through their complete ranges of motion in multiple directions/speeds? How often do lifters in the gym complain of tennis elbow? More than 9 times out of ten, this is the similar problem as the typing desk jockey: too many reps in one direction, exacerbated by potentially poor form with load, or just overuse.
If i could talk to the Animals - or the Nervous System...
Simple concept of why joint mobility work, like doing ZHealth R-Phase and I-Phase is so important: mechanorecption and nociception.
Mechanoreceptors populate the muscles and the tendons around joints. The give our brain information, through the nervous system of where we are in space and how fast we're moving. The other big proprioceptor around the joints are nocicpetors - nerves that react to noxious stimulus, like a cut or a kick or an impingement. If limbs are not moving well, the number of mechanoreceptors fired are way less than if they do move. Significantly. Nociceptors, which are far fewer in ratio to most mechanorecpetors are free to fire. And 1 is always louder than zero.
Signal Processing. Pain is something the brain says about a signal through the nervous system. A nociceptor may fire, but if the signal from the mechanorecptors is louder because more of these are firing, the brain mayn't interpret the action as something that needs to fire up as pain. If however the nociceptor is the only thing talking because the other mechanorecpetors in the area are inhibited from lack of mobility, then that pain signal may just get amplified.
Oh, Canada! Here's a way you might model this signal processing concept. At a recent mobility seminar, i started to sing O Canada - large room but everyone heard me. No one else was speaking. I then asked participants in the room to sing - at a normal volume not shouting or anything - God save the queen - while i sang O Canada while someone at the door listened in. What song do you think the person listening heard?
Movement Sings. So movement, on one simple level - movement through the fullest possible range of motion - helps to send positive "all clear" signals to the nervous system.
Practicing movement helps the joints learn to move through their full range of motion. Here's an example. When i started doing R-Phase in Z-Health, i looked with amazement on the thoracic circles - moving *just* the upper spine in a circle - of a fellow RKC. Me doing thoracic glides just front at back: ok i'm doing them! And there was no movement. Practicing them even though it felt like nothing was happening eventually caused rather a lot to happen, to the point the other day where a master trainer said "well you have such excellent thoracic mobility this isn't a problem for you; most people need...."
One gets joint mobility the same way one gets to carnegie hall it seems: practice practice practice.
Healing off the Table: Doing it For Ourselves:
Self movement more so than manual work (being worked on by others or having limbs moved passively) engages motor learning. That self-initiated action to control a motion fires up way more of the nervous system, building new patterns of movement with each rep. This is fabulous for self-care. Practically, the number of athletes i work with and whom colleagues work with who come in complaining of shoulder pain, elbow pain or back pain, generally speaking
- a) get their pain significantly lessened if not eliminated in a single session by getting at a movement pattern that is not firing correctly so good mobility is inhibited
- b) are able to take care of themselves afterwards because they know and have the tools on how to reduce the problem by the mobility work, so they can get on with their strength or health or life practices
- c) as their mobility improves, they have fewer flare ups
It's that simple. And while we've focused on the benefit of moving joints for the nervous system due to mechanorecptors around the joints, in future we can look at movement of the skin, fascia, lymph and gut that also comes into play - how mobilty assists these other movements to feel better and perform better.
In the meantime, i hope this for me unusually brief overview helps get a handle on why mobilty work may be a good practice to consider if it's not already part of your daily practice. And here's an example of controlled movement:
Full Motion: Herman Cornejo executes a seeming impossible
double tours en l’air as part of David Michalek's slow dancing project.
double tours en l’air as part of David Michalek's slow dancing project.
Next Time: threat, pain and threat modulation.
Related Posts
- can be found at the z-health article index
- Mobility vs Flexibility: is there a difference?
"elbows have fabulous movement possibilities but do you know some ways to move them through their complete ranges of motion in multiple directions/speeds?"
ReplyDeleteLooking at an elbow joint: http://www.digitalartform.com/archives/2004/11/anatomy_practic_5.html
Curls should do the trick.
Yup elbows do extension and flexion, but their is also movement around those joints in terms of how the forearm moves which means those same bones are supporting supination and pronation. And when doing things like elbow circles (imagine the movement of brushing a hair out of your eye and keep your forearm going around), we engage more areas of the surfaces around the joints, more muscles activated in interesting ways, more patterns of movement explored.
ReplyDeleteThis variety can become important when working with folks who have developed for instance tennis elbow.
mc